If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80/x^2=8
We move all terms to the left:
80/x^2-(8)=0
Domain of the equation: x^2!=0We multiply all the terms by the denominator
x^2!=0/
x^2!=√0
x!=0
x∈R
-8*x^2+80=0
We add all the numbers together, and all the variables
-8x^2+80=0
a = -8; b = 0; c = +80;
Δ = b2-4ac
Δ = 02-4·(-8)·80
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*-8}=\frac{0-16\sqrt{10}}{-16} =-\frac{16\sqrt{10}}{-16} =-\frac{\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*-8}=\frac{0+16\sqrt{10}}{-16} =\frac{16\sqrt{10}}{-16} =\frac{\sqrt{10}}{-1} $
| 6h-4-3h=17 | | 6+6x=x+1 | | -22=2(5x-8) | | 25+15x=200 | | 7s+4(3s)=18 | | -3,7x/1,7=-37 | | 5^5x-2=13 | | s/3=3 | | -3(7b+6)=-25 | | 2=2d-8 | | 1,5x/3,4=13 | | x(2x-5)=88 | | .666667x+6=8 | | -9(8+5s)=17 | | 4+x-3x=20 | | 1.1/2x=3 | | 24x^2+32x-44=-2x+1 | | -4v+3v=-1 | | 3(x+5)+69=180 | | -4v+3v=1 | | 8x-15=137 | | 3(6–4x)–27x=10x–31 | | 7x-12x=-6 | | 2(a-6)=a-(13-a) | | X^2+1+4x=2x^2+3x-2 | | 10r+8=8r | | x/13,2=444 | | n-6=2n-9 | | 4z=3z+2 | | 3y+18=180 | | 1+3x=4(0.5+0.75x)-1 | | x/91=3,1 |